Technical support: support@abbkine.com Website: https://www.abbkine.com # **CheKine™ Micro ATP Content Assay Kit** Cat #: KTB1016 Size: 48 T/96 T | [-] | Micro ATP Content Assay Kit | | | | | |------------------|---|-----|-------------------------------|--|--| | REF | Cat #: KTB1016 | LOT | Lot #: Refer to product label | | | | | Detection range: 0.02-8 μmol/mL | | Sensitivity: 0.01 µmol/mL | | | | | Applicable samples: Animal Tissues, Plant Tissues, Cells, Bacteria, Serum, Plasma | | | | | | Å. | Storage: Stored at -20°C for 6 months, protected from light | | | | | ## **Assay Principle** ATP exists widely in animals, plants, microorganisms and cultured cells. It is the biological energy currency, and energy charge is the main parameter to describe the state of cell energy metabolism. Determination of ATP content and calculation of energy charge can reflect the state of energy metabolism. CheKine™ Micro ATP Content Assay Kit can detect the ATP concentration from liquid samples, such as animal and plant tissues, cells, bacteria, and serum (plasma). The principle is that creatine kinase catalyse the reaction of creatine and ATP to creatine phosphate. Phosphomolybdic acid colorimetry can detect creatine phosphate content at 700 nm to reflect ATP content. ## **Materials Supplied and Storage Conditions** | | S | ize | Storage conditions | | |----------------|--------|-------|-----------------------------|--| | Kit components | 48 T | 96 T | | | | Reagent | 1 | 1 | 4°C | | | Reagent II | 1.5 mL | 3 mL | 4°C | | | Reagent III | 15 µL | 30 μL | -20°C, protected from light | | | Reagent IV | 5 mL | 10 mL | 4°C, protected from light | | | Reagent V | 25 mL | 50 mL | 4°C | | | Standard | 1 | 1 | -20°C, protected from light | | ### **Materials Required but Not Supplied** - · Microplate reader or visible spectrophotometer capable of measuring absorbance at 700 nm - 96-well plate or microglass cuvette, precision pipettes, disposable pipette tips - · Centrifuge, water bath - · Deionized water - Homogenizer (for tissue samples) Version 20240711 ### **Reagent Preparation** **Reagent I:** Before use, add 1 mL deionized water for 48 T, add 2 mL deionized water for 96 T, heat and boil until completely dissolved. The rest of the reagent is stored at -20°C for 4 weeks after aliquoting to avoid repeated freezing and thawing. Reagent II: Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C. **Reagent III:** Before use, add 0.5 mL deionized water for 48 T, add 1 mL deionized water for 96 T and mix well. The rest of the reagent is stored at -20°C, protected from light for 4 weeks after aliquoting to avoid repeated freezing and thawing. **Working Reagent:** Please prepare according to the dosage (sample number × 0.2 mL), according to the ratio of Reagent |V: Reagent V=1:5, and use freshly according to need. **Standard:** Before use, add 10 mL deionized water to dissolve, and the concentration is 2 µmol/mL ATP standard solution. The rest of the reagent is stored at -20°C, protected from light for 4 weeks after aliquoting to avoid repeated freezing and thawing. Note: The experiment should not have any phosphorus pollution, so it is recommended to use disposable plastic utensils. ### **Sample Preparation** Note: We recommend that you use fresh samples. If not assayed immediately, samples can be stored at -80°C for one month. - 1. Plant or animal tissue samples: Weigh 0.1 g tissues and add 1 mL deionized water. Homogenize on ice. Heat at 100°C for 5 min. Centrifuge at 8,000 g for 15 min at 4°C. Use supernatant for assay. - 2. Cells or bacteria: Collect 5×10⁶ cells or bacteria into the centrifuge tube, wash cells or bacteria with cold PBS, discard the supernatant after centrifugation; add 1 mL deionized water to ultrasonically disrupt the cells or bacteria 1 min (power 20% or 200 W, ultrasonic 2 s, interval 1 s, repeat 20 times). Heat at 100°C for 5 min. Centrifuge at 8,000 g for 15 min at 4°C. Use supernatant for assay. - 3. Serum or plasma sample: Take 0.1 mL sample and add 1 mL deionized water, mix well. Heat at 100°C for 5 min. Centrifuge at 8,000 g for 15 min at 4°C. Use supernatant for assay. Note: It will be better to quantify the total protein with Protein Quantification Kit (BCA Assay), Cat #: KTD3001, if the content is calculated by protein concentration. ### **Assay Procedure** - 1. Preheat the microplate reader or visible spectrophotometer for more than 30 min, and adjust the wavelength to 700 nm, visible spectrophotometer was returned to zero with deionized water. - 2. Add the following reagents respectively into each well: | Reagent | Blank Well (μL) | Standard Well (µL) | Test Well (μL) | Control Well (μL) | |----------------------------------|-----------------|--------------------|----------------|-------------------| | Sample | 0 | 0 | 10 | 10 | | Standard | 10 | 10 | 0 | 0 | | Reagent | 0 | 20 | 20 | 0 | | Reagent II | 10 | 10 | 10 | 10 | | Reagent III | 0 | 10 | 10 | 0 | | Deionized Water | 30 | 0 | 0 | 30 | | Mix well and incubate at 37℃ for | r 30 min | | | • | | Working Reagent | 200 | 200 | 200 | 200 | Version 20240711 After incubation at 37°C for 20 min, the absorption value was measured at 700 nm wavelength. Calculate $\Delta A_{Test} = A_{Test} - A_{Control}$, $\Delta A_{Standard} = A_{Standard} - A_{Blank}$. Note: (1) Only one Blank Well and Standard Well are usually made. (2) In order to guarantee the accuracy of experimental results, need to do a pre-experiment with 2-3 samples. If ΔA_{Test} is less than 0.001, increase the sample quantity appropriately. If ΔA_{Test} is greater than 1.0, the sample can be appropriately diluted with deionized water, the calculated result multiplied by the dilution factor, or decrease the sample quantity appropriately. (3) The final reaction color of the system is blue or yellow-green, which is a normal phenomenon and does not affect the detection result of OD value. ### **Data Analysis** Note: We provide you with calculation formulae, including the derivation process and final formula. The two are exactly equal. It is suggested that the concise calculation formula in bold is final formula. - 1. Calculating the content of ATP - (1) Calculated by the volume of serum (plasma) $ATP\ (\mu mol/mL) = [C_{Standard} \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (V3 \times V1 + V2) = 20 \times \Delta A_{Test} + \Delta A_{Standard} \times V1 A_{St$ (2) Calculated by fresh weight of samples ATP (μ mol/g fresh)=[$C_{Standard} \times \Delta A_{Test} + \Delta A_{Standard} \times V1] + (W \times V1 + V2) = 2 \times \Delta A_{Test} + \Delta A_{Standard} + W$ (3) Calculated by sample protein concentration ATP (μmol/mg prot)=[Cstandard ×ΔA_{Test}÷ΔA_{Standard}×V1]÷(V1÷Cpr)=2×ΔA_{Test}÷ΔA_{Standard}+Cpr (4) Calculated by number of cells or bacteria ATP (μmol/10⁶)=[C_{Standard}×ΔA_{Test}÷ΔA_{Standard}×V1]÷(5×V1÷V2)=**0.4×ΔA_{Test}÷ΔA_{Standard}** Where: C_{Standard}: the concentration of the standard, 2 µmol/mL; V1: add sample volume, 0.01 mL; V2: add deionized water volume to sample, 1 mL; V3: add serum (plasma) volume: 0.1 mL; Cpr: sample protein concentration, mg/mL; W: weight of sample, g; 5: Total number of cells or bacteria, 5×10⁶. #### **Recommended Products** | Catalog No. | Product Name | | | |-------------|--|--|--| | KTB1320 | CheKine™ Micro Plant Soluble Sugar Assay Kit | | | | KTB1330 | CheKine™ Micro Blood Glycogen Assay Kit | | | | KTB1340 | CheKine™ Micro Glycogen Assay Kit | | | | KTB1350 | CheKine™ Micro Total Carbohydrate Assay Kit | | | ### **Disclaimer** The reagent is only used in the field of scientific research, not suitable for clinical diagnosis or other purposes.